Дата публикации: 27.05.2023
Купить или узнать подробнее
321. На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2 (рис.24). Требуется: 1) используя теорему Остроградского-Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = 4σ, σ2 = σ; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять σ = 30 нКл/м2, r = 1,5R; 3) построить график E(r).
Цена: 0.12 $.
Купить или узнать подробнее
Решение задачи №321 из методички Чертова для заочников
321. На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2 (рис.24). Требуется: 1) используя теорему Остроградского-Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = 4σ, σ2 = σ; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять σ = 30 нКл/м2, r = 1,5R; 3) построить график E(r).
Цена: 0.12 $.